MARIAH C. BOUDREAU

CONTACT

(802) 582-9854

 \square mariah.boudreau@uvm.edu

mariahcboudreau.github.io

EDUCATION

University of Vermont

August 2019 - Summer 2024 (est.)

Ph.D. in Mathematical Sciences

Advisors: Chris Danforth & Laurent Hébert-Dufresne

Saint Michael's College

August 2015 - May 2019

B.S. in Mathematics

Minors in Computer Science & Statistics

SKILLS

Python, R, MATLAB, LaTeX, Java, C++

Statistical analysis

Communication, collaboration, problem solving, critical thinking, positive attitude

Conversational French

RESEARCH INTERESTS

Stochastic models of disease dynamics that inform scientists and decision makers

RELEVANT COURSEWORK

Differential Equations (DE) | Advanced Ordinary DE | Partial DE, Linear Algebra | Numerical Analysis | Numerical Partial DE | Principles of Complex Systems | Modeling of Complex Systems I & II | Probability and Statistics | Bayesian Statistics | Philosophy of Science, Technology, and Enrvironment | Philosophy of the Mind, Free Will and Neuroethics

PERSONAL INTERESTS Hiking, skiing, alpine touring, Crossfit and sudoku puzzles

PROFESSIONAL EXPERIENCE

Ph.D. Candidate

University of Vermont

- Graduate Research Assistant
- Graduate Teaching Assistant

Contractor

Institute for Disease Modeling at the Bill and Melinda Gates Foundation

May 2022 - July 2022

August 2019 - Present

RESEARCH

Stochastic Modeling

- Integrated interventions into a time-dependent probability generating function model for an epidemiology application
- Defined metrics for comparing targeted and random vaccination strategies with the result of that model
- Supported development of an open-source Human papillomavirus (HPV) population model
- · Developed a mechanistic model using master equations to give HPV viral load parameter estimates for population model listed above
- Conducted a sensitivity analysis for a probability generating function model through simulations for an epidemiology application

Data Science

- Processed blood work data for the Lived Experience Measured Using Rings study at the University of Vermont
- Analyzed the relationship between blood work data and Oura ring sleep data

Other

- Analyzed ski resort trail networks using network measures
- Processed elevation data for ski trails
- · Workshopped preliminary analysis for lemur food networks

PUBLICATIONS AND OTHER WRITINGS

M.C. Boudreau, A.J. Allen, N.J. Roberts, A. Allard & L. Hébert-Dufresi Temporal and probabilistic comparisons of epidemic interventions Bull of Math. Biol. 85, 118 (2023)	September 2023 ne
R.M. Stuart, J.A. Cohen, C.C. Kerr, R.G. Abeysuriya, M. Zimmerman, D.W. Rao, M.C. Boudreau , & D.J. Klein <i>HPVsim: An agent-based model of HPV transmission and cervical</i> <i>disease</i>	February 2023
MedrXiv	
A.J. Allen, M.C. Boudreau , N.J. Roberts, A. Allard & L. Hébert-Dufres Predicting the diversity of early epidemic spread on networks Phys. Rev. Research 4, 013123	February 2022 ne
M.C. Boudreau , J.A. Cohen & L. Hébert-Dufresne Working title: <i>Epithelium dynamics model with master equations: a ca</i> <i>study with Human Papillomavirus</i> Draft available upon request	In Progress ase
M.C. Boudreau C.M. Danforth & L. Hébert-Dufresne	In Progress

Working title: Sensitivity analysis of stochastic polynomials, and its application to epidemic forecasting and random graphs Draft available upon request